
ReKisstory Tutorial for Data Mix

 2025-02-09
Go Sugimoto

Is it hard to use Data Mix?
It is understandable, because it is new to many people. Why is it complicated? It is because our
data in our world is so diverse. It is not so simple to organize diversity in a uniform manner. But
do not worry, here we can learn how to make the best out of it.

In this document, we will first explain what you can do with Data Mix. Then, we present
examples of importing different types of data in Data Mix. So, you can immediately copy and
paste them for testing. You will also find some tips. Once you understand the basic use of Data
Mix, you can start thinking about your data.

What is Data Mix?
Data Mix is a function in ReKisstory to import your data to “mix” it with the search results of
ReKisstory. ReKisstory only holds over 100 million fact items from Wikidata, which contains
generic data often found in an encyropedia (e.g. Wikipedia). What if you can combine the data
with more specified (local) data used for marketing, health care, sports, or climate change? Data
Mix enables you to analyze a wide range of data in combination!

Four data import methods

You do not always have to have your data in your hand. You can also use data accessible on
the web. There are four methods to import you data:

1.​ CSV upload
2.​ API endpoint
3.​ SPARQL endpoint
4.​ Website (AI)

If you have data in CSV (you can export this file format from a spreadsheet, e.g. Microsoft Excel
and Google Sheets). If you know how to obtain data via API or SPARQL endpoint, you can fetch
data from the endpoint on the web. If you have no data, but would like to reuse data from a
website, our experimental AI service automatically extract data from it.

Data Mix Procedure
We have a clear step-by-step indicator called Your Recipe at the top of the section:

Once data is imported by one of the four methods (Step 1,2,3), the next step is to map the data
to our data model (except the Website option)(Step 4). This process enables you to specify how
your data should be combined with the ReKisstory search. An easy-to-understand mapping tool
is provided, but you have to do it manually.

After the mapping is defined, you can simply search ReKisstory (Compare) and see the
combined results (Step 5,6).

Step 1, 2, 3 example by method

1.​CSV upload
Step 1: Drag and drop a CSV file in the input box and hit Upload

Step 2: Test import result and import setting

If the CSV upload is successful, you will see the test import screen. If not, please start from Step
1. In this step, sample data appears to check the imported data. Before starting the mapping,
you can change the two settings for the real data import (optional). In particular, if the preview
table looks strange, this is the chance to clean the data for the next step:

1)​ You can modify the data separator (if the comma is not the separator) including
semicolon (;), and white spade or tab, because wrongly separated CSV data will produce
unexpected mapping.

2)​ You can specify which row is the header row (i.e. which row starts the actual data). Type

the number of rows to be skipped.

Comma and 0 (zero) are pre-filled as default. So, normally you do not need to do anything in
this step. If your options are correct, hit Import CSV

Step 3: Check imported data
Double-check if the data is correctly displayed as a table.

Step 4: Data Mapping
This step is the same for all three import methods. Please go further below to continue.

2.​API endpoint
Step 1: Type the URL of a REST API endpoint in the input field and hit Connect to API

Example public API endpoints for testing:
●​ https://wikidata.reconci.link/en/api?query=obama (Used for this tutorial. Search

results for “Obama”)
●​ https://datausa.io/api/data?drilldowns=Nation&measures=Population (US

population by year)
●​ https://ergast.com/api/f1/drivers.json (F1 drivers)
●​ https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http

%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fl
df.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&dataset
s=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=ht
tp%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_20
23-10-27.intavia.eu&page=1&limit=50&q=Krieg (Search results for “Krieg” in
biographical data)

Step 2: Test import result and import setting
If a test connection to API is successful, you will see the test import screen. If not, please start
from Step 1. In this step, a sample data appears in a yellow box to check the imported data.
Before starting the mapping, you can change the setting for the real data import (optional). In
particular, you can flatten the data, because nested data will produce unexpected mapping.

https://wikidata.reconci.link/en/api?query=obama
https://datausa.io/api/data?drilldowns=Nation&measures=Population
https://ergast.com/api/f1/drivers.json
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg
https://intavia-backend.acdh-dev.oeaw.ac.at/v2/api/events/search?datasets=http%3A%2F%2Fapis.acdh.oeaw.ac.at%2Fdata%2Fv5&datasets=http%3A%2F%2Fldf.fi%2Fnbf%2Fdata&datasets=http%3A%2F%2Fwww.intavia.eu%2Fsbi&datasets=http%3A%2F%2Fdata.acdh.oeaw.ac.at%2Fintavia%2Fcho%2Fv6&datasets=http%3A%2F%2Fdata.biographynet.nl&datasets=http%3A%2F%2Feuropeana_2023-10-27.intavia.eu&page=1&limit=50&q=Krieg

In the example, you can see the data is nested twice. The first nesting is “results” under which
all data is found. To identify a nesting, find a list/array (square bracket) in the imported
data ([]). This must be specified in the first input field:

However, if you import data with only “results” specified as nesting, you will get concatenated
data in a table column:

Example of nested data (if you do not change the import setting to avoid nesting)

This is because there are two lists inside the data in the “results”. They are highlighted in red
and blue). In this case, you find a list under “features” and “type”.

{
 "result": [
 {
 "description": "President of the United States from 2009 to 2017",
 "features": [
 {
 "id": "all_labels",
 "value": 100
 }
],
 "id": "Q76",
 "match": false,
 "name": "Barack Obama",
 "score": 100.0,
 "type": [
 {
 "id": "Q5",
 "name": "human"
 }
]
 },

Although the concatenated data is OK to mix with ReKisstory, it is not the best. To avoid this, the
ReKisstory can flatten these nesting: you can use the import setting:

The two nested data is flattened as follows:

1)​ What is the key (i.e. name of the nesting list)? >> Root key for a list
2)​ What are the keys in the list (i.e. name of the record in each list)? >> 1st ket within the

list, 2nd key within the list

Step 3: Check imported data

When the real data import is successful, you will see the preview of the imported data. In case
of nesting, the tool automatically create columns with new names. In the example, new columns
have names of concatenated key names:

●​ features_id
●​ features_value
●​ type_id
●​ type_name

Step 4: Data Mapping
This step is the same for all three import methods. Please go further below to continue.

3.​SPARQL endpoint
Step 1: Type the URL of a SPARQL API endpoint in the input field and hit Test endpoint

Example public API endpoints for testing:

●​ https://dbpedia.org/sparql (Used for this tutorial. DBpedia generic encycropedia)
●​ https://sparql.europeana.eu/ (Europeana cultural heritage collections)
●​ https://query.wikidata.org/sparql (Wikidata. ReKisstory’s data source can be also

searched on your own way and added to the results)

. Some considerations
●​ Only SELECT query will be possible in the next step
●​ Only JSON format
●​ If not working, try to obtain CSV from the endpoint by yourself and use CSV

upload method for Data Mix
●​ In case a username and password are needed to access the SPARQL endpoint,

you can specify them. However, it is at your own risk

Step 2: Test import result and import setting

https://dbpedia.org/sparql
https://sparql.europeana.eu/
https://query.wikidata.org/sparql

If a test connection to the endpoint is successful, you will see the test import screen. If not,
please start from Step 1. In this step, sample data appears in a yellow box to check the
imported data.

If everything is correct, you can type SELECT query in the input box:

Use the following example queries for testing:

https://dbpedia.org/sparql

https://dbpedia.org/sparql

SELECT DISTINCT ?name ?person ?birth_p ?date ?img
WHERE {
​ ?person rdfs:label ?name; dbo:birthPlace ?birth_p; dbp:birthDate ?date; dbo:thumbnail
?img
​ FILTER (LANG(?name) = "en")
}
LIMIT 10

https://query.wikidata.org/sparql

SELECT DISTINCT ?person ?year ?birth_p ?name ?img
WHERE {
​ ?person wdt:P31 wd:Q5; wdt:P569 ?year; wdt:P20 ?birth_p; rdfs:label ?name;
wdt:P18 ?img .
​ FILTER (LANG(?name) = "en")
}
LIMIT 10

https://sparql.europeana.eu/

SELECT DISTINCT ?cho ?uri ?wduri ?dc_creator ?dc_date ?dcterms_created ?dc_identifier
?dc_title ?dc_type ?dcterms_spatial ?edm_currentLocation ?edm_isShownBy
WHERE { ?cho dc:creator ?uri . ?uri owl:sameAs ?wduri . FILTER(contains(STR(?wduri),
"wikidata.org")) BIND(IRI(REPLACE(str(?cho), "http://data.europeana.eu/proxy/europeana/",
"http://data.europeana.eu/proxy/provider/")) AS ?provider_proxy)
BIND(IRI(REPLACE(str(?cho), "http://data.europeana.eu/proxy/europeana/",
"http://data.europeana.eu/aggregation/provider/")) AS ?provider_agg)
BIND(IRI(REPLACE(str(?cho), "http://data.europeana.eu/proxy/europeana/",
"http://data.europeana.eu/item/")) AS ?item) ?provider_proxy edm:type ?edm_type .
?provider_proxy dc:creator ?dc_creator . ?provider_proxy dc:date ?dc_date . OPTIONAL
{?provider_proxy dcterms:created ?dcterms_created} OPTIONAL {?provider_proxy
dc:identifier ?dc_identifier} OPTIONAL {?provider_proxy dc:title ?dc_title} OPTIONAL
{?provider_proxy dc:type ?dc_type} OPTIONAL {?provider_proxy dcterms:spatial
?dcterms_spatial} OPTIONAL {?provider_proxy edm:currentLocation ?edm_currentLocation}
?provider_agg edm:rights ?edm_rights . OPTIONAL {?provider_agg edm:hasView
?edm_webResource} OPTIONAL {?provider_agg edm:object ?edm_object} OPTIONAL
{?provider_agg edm:isShownAt ?edm_isShownAt} ?provider_agg edm:isShownBy
?edm_isShownBy . }
LIMIT 100

https://query.wikidata.org/sparql

SELECT DISTINCT ?roleTypeLabel ?starttime ?coordinate_loc
?pointtime ?coordinate_loc_ ?statement ?statement_coordinate_loc ?place_birth
?statement_place_birth ?birthdate ?statement_birth ?p_name_proxy ?p_name ?p_label

https://query.wikidata.org/sparql
https://sparql.europeana.eu/
https://query.wikidata.org/sparql

?s_name ?property ?propertyLabel ?coordinate_place_birth (SAMPLE(?image_duplicate) as
?image)
WHERE {
BIND(?arg AS ?roleTypeLabel)
BIND(?date AS ?starttime)
BIND(?coordinate_place_birth AS ?coordinate_loc)
{
 wd:Q38234 ?p_name ?arg .
 ?p_name_proxy rdfs:label ?p_label .
 ?p_name_proxy wikibase:claim ?p_name .
 ?p_name_proxy wikibase:statementProperty ?s_name .
 OPTIONAL { wd:Q38234 wdt:P625 ?coordinate_loc_ . }
 OPTIONAL { wd:Q38234 wdt:P19 ?place_birth . }
 OPTIONAL { wd:Q38234 wdt:P569 ?birth_y . }

 ?arg ?s_name ?property .
 ?property rdfs:label ?propertyLabel .
 OPTIONAL { ?property wdt:P625 ?coordinate_loc . }
 OPTIONAL { ?property wdt:P18 ?image_duplicate . }
 { ?arg pq:P585 ?date . }
 UNION
 { ?arg pq:P577 ?pubdate . }
 FILTER (lang(?p_label) = 'ja') .
 FILTER (lang(?propertyLabel) = 'ja') .
 }
 UNION
 { wd:Q38234 wdt:P625 ?coordinate_loc_ . wd:Q38234 p:P625 ?statement_coordinate_loc .
wd:Q38234 ?p_name ?statement_coordinate_loc . ?p_name_proxy rdfs:label ?p_label .
?p_name_proxy wikibase:claim ?p_name . FILTER (lang(?p_label) = 'ja') . }
 UNION
 { wd:Q38234 wdt:P19 ?place_birth . wd:Q38234 p:P19 ?statement_place_birth .
wd:Q38234 ?p_name ?statement_place_birth . ?p_name_proxy rdfs:label ?p_label .
?p_name_proxy wikibase:claim ?p_name . ?place_birth wdt:P625 ?coordinate_place_birth .
FILTER (lang(?p_label) = 'ja') . }
 UNION
 { wd:Q38234 wdt:P569 ?birth_y . wd:Q38234 p:P569 ?statement_birth . wd:Q38234
?p_name ?statement_birth . ?p_name_proxy rdfs:label ?p_label . ?p_name_proxy
wikibase:claim ?p_name . FILTER (lang(?p_label) = 'ja') . }

 SERVICE wikibase:label { bd:serviceParam wikibase:language "ja, en" . }

}
GROUP BY ?roleTypeLabel ?starttime ?coordinate_loc
?pointtime ?coordinate_loc_ ?statement ?statement_coordinate_loc ?place_birth
?statement_place_birth ?birthdate ?statement_birth ?p_name_proxy ?p_name ?p_label
?s_name ?property ?propertyLabel ?coordinate_place_birth

Optionally, you can assign URI and name of the main entity:

As the data mapping in generic, you do not need to include URIs in your SPARQL query. We
use variables for mapping. So, if URIs are used in your query, ReKisstory cannot know them: we
will use a placeholder name and the result will have no hyperlinks. If you would like to have
hyperlinks in the result, you can specify in the input bow below. This would be useful, especially
for the main entity you will see in the data.

Step 3: Check imported data
When the real data import is successful, you will see the preview of the imported data.

Step 4: Data Mapping
This step is the same for all three import methods. Please go further below to continue.

4.​Website (AI)
Step 1: Type the URL of a website in the input field and hit Extract data from website

You go to Step 5, if the information extraction is successful by AI.

Step 4: Data Mapping
Data Mapping is slightly complicated process, because there is some manual work. However,
our interface makes it as easy as possible.

You need to fill the left input boxes (“Your Column Header”) to find the match with the
ReKisstory data model (“Target Column Header”). Other columns shows what a target column
header (per row) should contain. Your Column Headers are the labels in the header of your data
(you saw the preview in the table in Step 3)1.

For instance, The first row is about Item (link). This column should contain unique identifiers for
your data. It could be a numeric number (ID1, 2, 3…) or URI (http://www.example,com/id1,
http://www.example,com/id2, http://www.example,com/id3..). Data type is xsd:anyURI as most
desirable. The description of header is given. To remember your column header.

1 The “headers” are called differently, depending on your import method. For CSV upload, they are header
columns (labels of the columns). For API, they are actually keys in the JSON data (because we “mapped”
keys to the table headers in Step 2). For SPARQL, they are the variables used in the SELECT query.

In case of MatchesRealMadrid.csv example from CSV upload, we can start mapping:

●​ ID can be the “Item (link)” header, because it contains unique identifier
●​ HomeTeam can be in the “Item” header, because it contains the name of home teams
●​ AwayTeam can be in the “Object” header, because it contains the name of away teams

Two Timeline Visualization possibilities
If your data contains numeric data together with timestamps, you have two choices: 1) use them as
statistics over time, 2) use the as a single data point over time. The choic will determine what type of
Timeline visualization will be provided. See the Data Mix results section below for more details.

If you opt for 1), provide a mapping for Statistics and Statistics 2 in the mapping table. If you opt for
2), do not specify them. Instead, you can use other fields for your numeric data for mapping.

Complete mapping example
(“FTHome” and “FTAway” are numeric data and are used as statistics over time (option 1 above))

Your Column Header Target Column Header

ID Item (link)

HomeTeam Item

AwayTeam Object

MatchDate Starttime

The same data mapping, except FTHome and FTAway will not be used as statistics ove time,
but single points.

Some considerations:
●​ At least one header should be filled, but no mandatory input (the more you define the

mapping, the more data will appear in the results)
●​ Colored rows are recommended to fill to make sense of the results

○​ Red: identifiers and names
○​ Purplse: timestamp (for timeline view), coordinates (for map view), statistics (for

timeline view)

Customize the chart design
If you specify a mapping at least one Statistics, you can expand the hidden below the mapping
table. Here you can specify the labels of your statistical data (in legend), chart type (line, bar,
scatter), chart type point stype (circle, square), and chart point size in pixels.

3 Goal scores of the away team
2 Goal scores of the home team

FTHome2 Statistics

FTAway3 Statistics2

Your Column Header Target Column Header

ID Item (link)

HomeTeam Item

MatchDate Starttime

FTHome Object

FTAway Relation

Step 5: Search ReKisstory (Compare)
Compare search here is almost the same as the Compare section. You just need to type text in
the inputbox and select one item from the suggested items. You see a few more options for
each item:

Merge with statistics:
If you check this box, the statistics in the mapping will be mapped to this entity. You can only tick
one checkbox from one of the four items.

Values on Y-axis (for stats mixing):
You specify an integer in the box (negative or positive value) to plot this item as continuous data
over time in the Timeline view. This option is used to increase the visibility of the merged data in
the Timeline view. It is best to avoid the integer that are included in your external data.
Otherwise, this item may overlap with statistical data, and it is hard to see the data separately.

Step 6: Double-check all your input
Hit the Search & Integrate Data button and see the Data Mix results. The search process may
take longer time (1-2 minutes), because you search ReKisstory, as well as processing the
mapping, integrating all data, and rendering the results in many views. Please be patient.

Data Mix Results
The result view is similar to the result view of Compare. It includes tabs for different views
(Table, Timeline, Map, Gallery, and Wikipedia articles).

The timeline view may look different if your data contains numeric data (statistics) with
timestamps. During the mapping, you can decide if you would like to take data as a) continuous
data over time, or b) a single data point.

a)​ As continuous data over time

The result Timeline includes a) data from CSV about the results of La Liga Spanish football
league and b) Real Madrid football club from Compare search. The three lines illustrate: Home
scores (Real Madrid) in red and Away Scores (away team) in green, as well as the history of
Real Madrid in blue (e.g. Zidadine Zidane started as head coach in January 2016).

b)​ As a single data point

The real examples of the whole CSV upload process
can be found in Tutorials

●​ Data Mix with spatial data
●​ Data Mix with statistical data

https://rekisstory.labs.vu.nl/tutorials/
https://rekisstory.labs.vu.nl/static/tutorials/rekisstory_tutorial_for_spatial_data_integration_by_csv_import.pdf
https://rekisstory.labs.vu.nl/static/tutorials/rekisstory_tutorial_for_statistical_data_integration_by_csv_import.pdf

	ReKisstory Tutorial for Data Mix
	Is it hard to use Data Mix?
	What is Data Mix?
	Four data import methods
	Data Mix Procedure
	Step 1, 2, 3 example by method
	1.​CSV upload
	2.​API endpoint
	3.​SPARQL endpoint
	4.​Website (AI)
	Step 4: Data Mapping
	Some considerations:
	Customize the chart design

	Step 5: Search ReKisstory (Compare)
	Step 6: Double-check all your input
	Data Mix Results
	The real examples of the whole CSV upload process can be found in Tutorials

